

Experiences with geothermal energy development around the world

Formation of Geothermal Energy Policy and Laws in Uganda: Stakeholder Engagement Programme

Dr. Paul Zakkour

Project Manager, Carbon Counts

4th – 8th July 2016, Kabira Country Club, Kampala

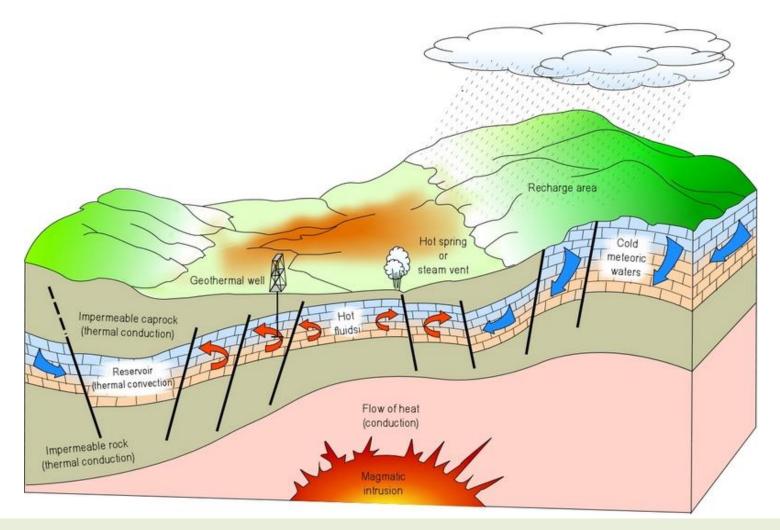
NORTON ROSE FULBRIGHT

- 1. What is geothermal energy?
- 2. Where is it being used today?
- 3. How is geothermal energy developed?
- 4. How much does it cost?
- 5. How are projects structured and financed?
- 6. What is its role in Uganda?

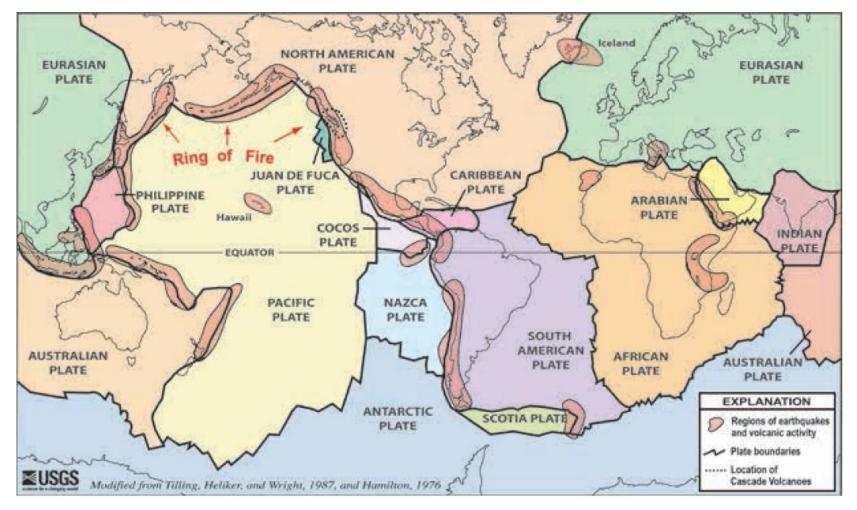
2

Geothermal energy

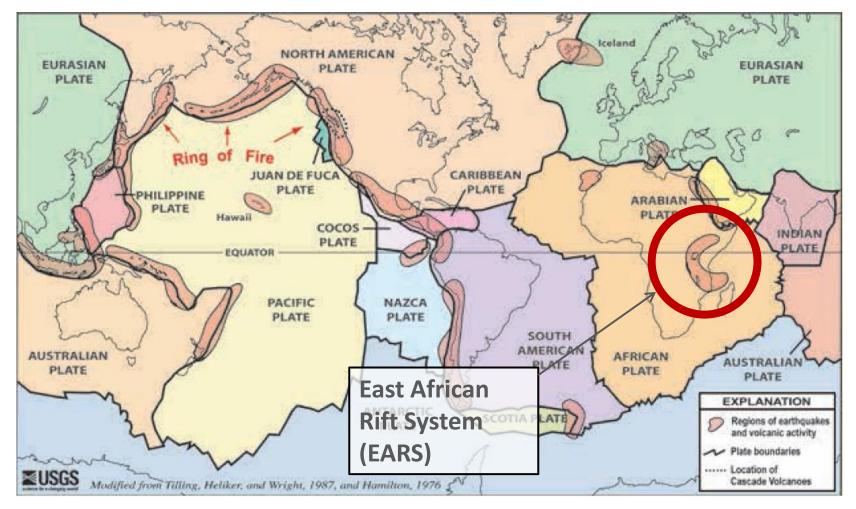
- Geothermal energy is heat from the Earth
 Global energy potential is huge
- Hydrothermal system:
 - Natural reservoir of water deep in rocks
 - Rain water to recharge the reservoir
 - Shallow heat source form core of the Earth to heat the water in the reservoir (< 3km deep)
 - Caprock to retain hot steam in the reservoir
- Other systems exist, but of limited interest to Uganda (e.g. Enhanced Geothermal Systems)



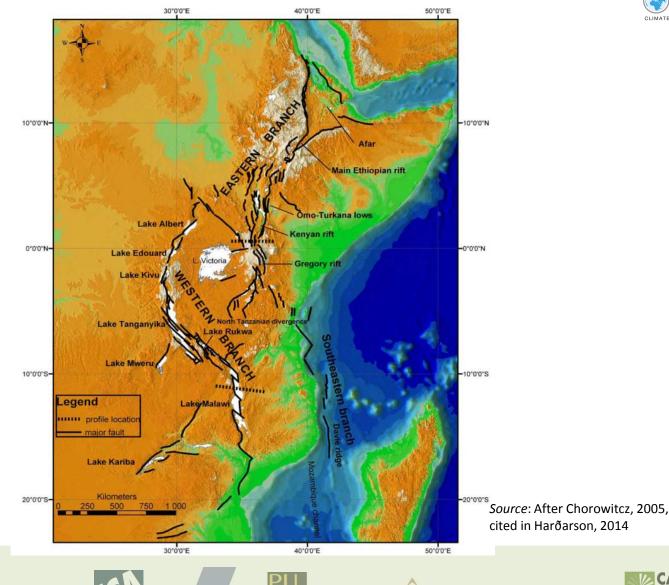
Geothermal system



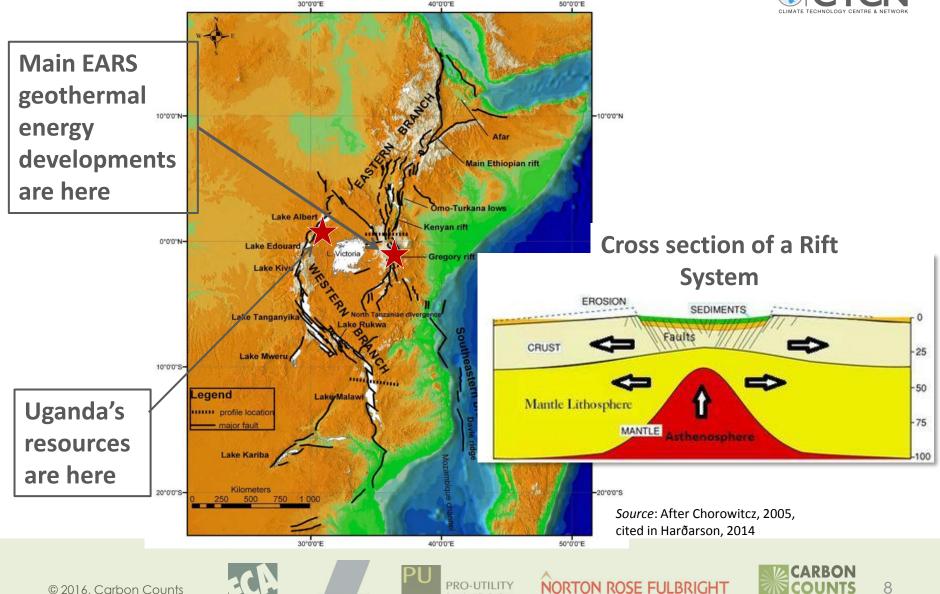
Geothermal locations

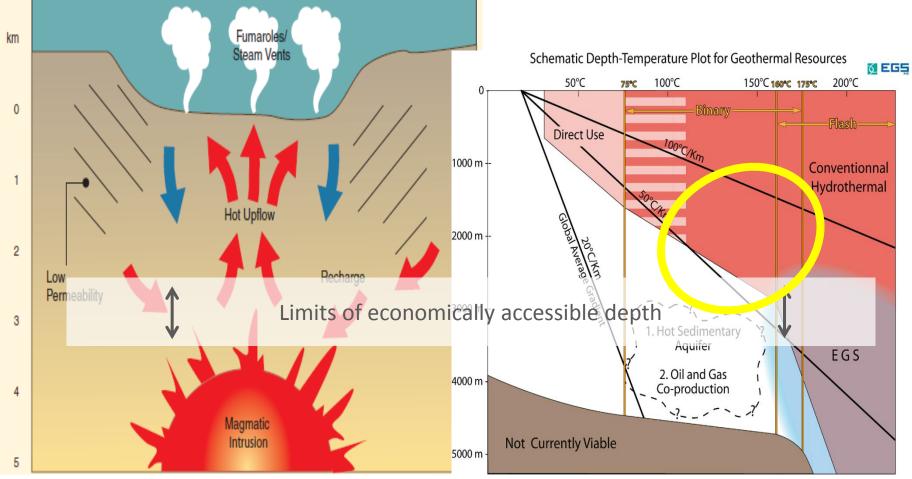


Geothermal locations

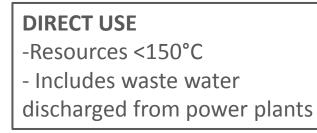


East African Rift System (EARS)




East African Rift System (EARS)

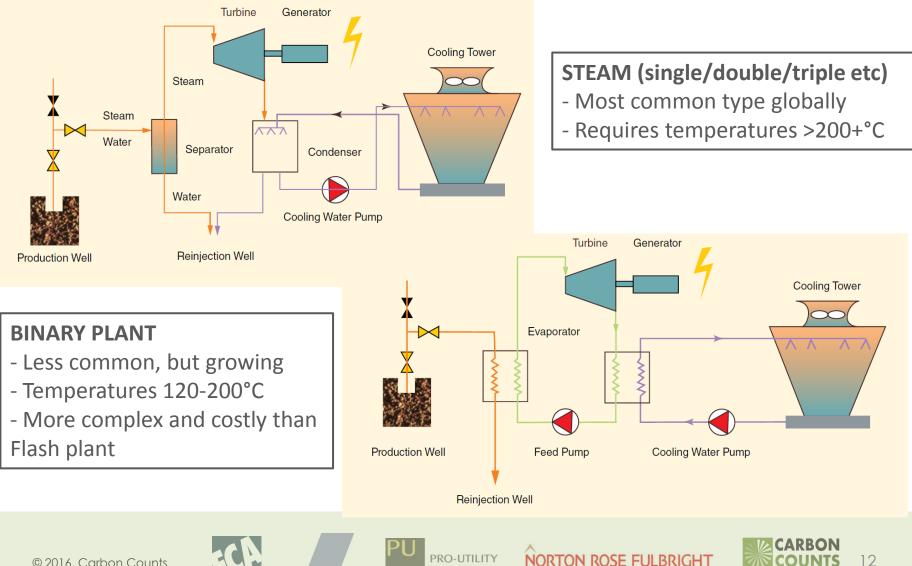
Geothermal gradient



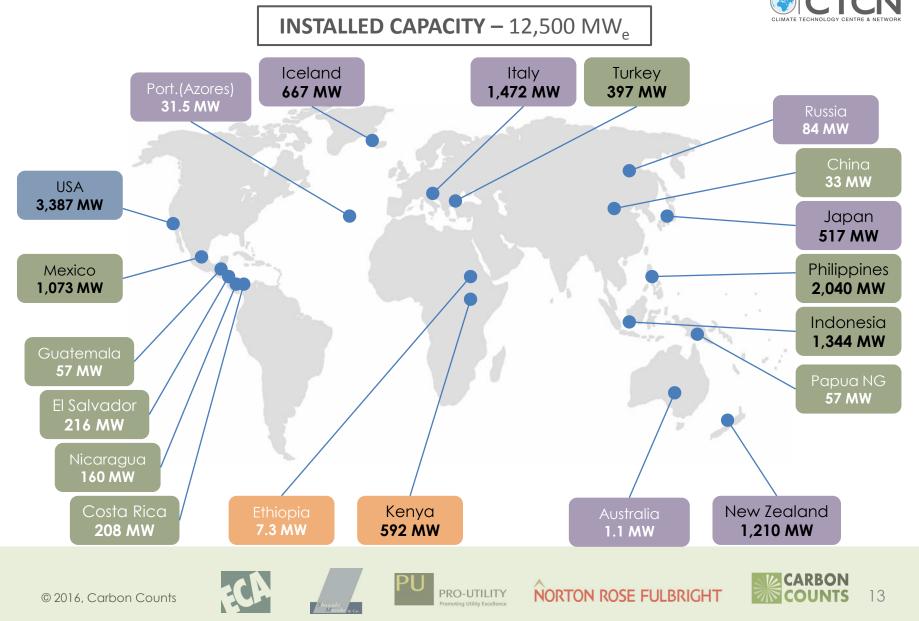
Geothermal energy use

POWER GENERATION - Resources >150°C

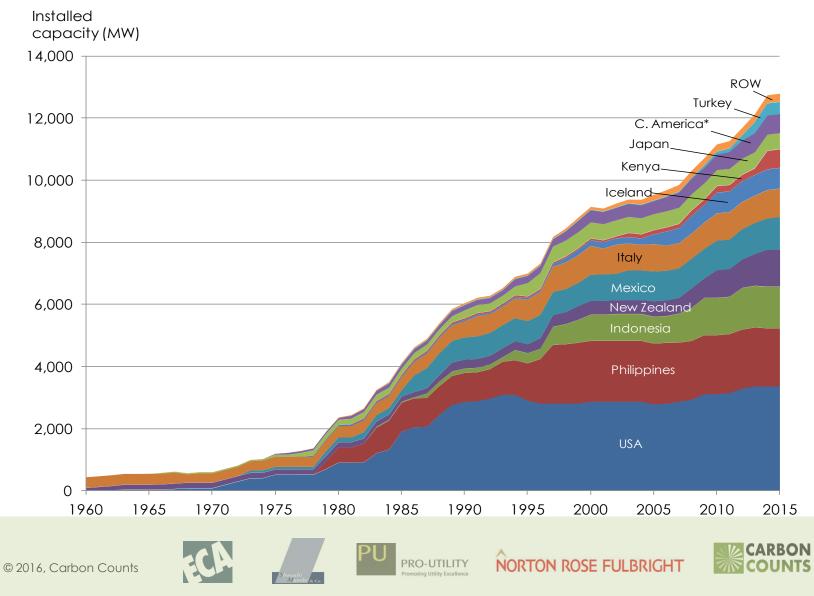
Character of geothermal energy



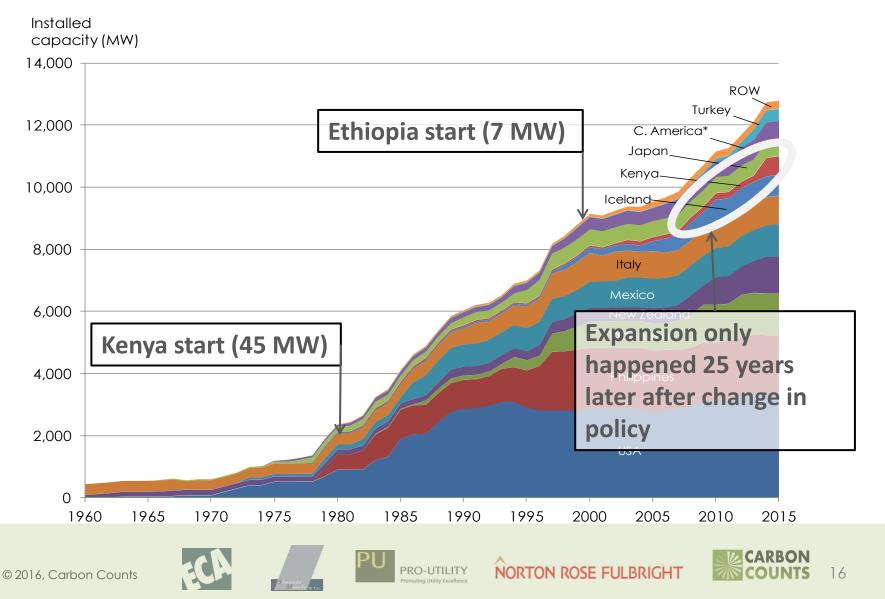
- Geothermal can be a source of clean, reliable, secure energy for electricity supply
- Complex source of energy to develop, however, with several barriers
 - Resource uncertainty = risks and costs
 - Difficult to finance as a result
- In Uganda it must compete with other sources of power (e.g. hydropower)


Geothermal power plants

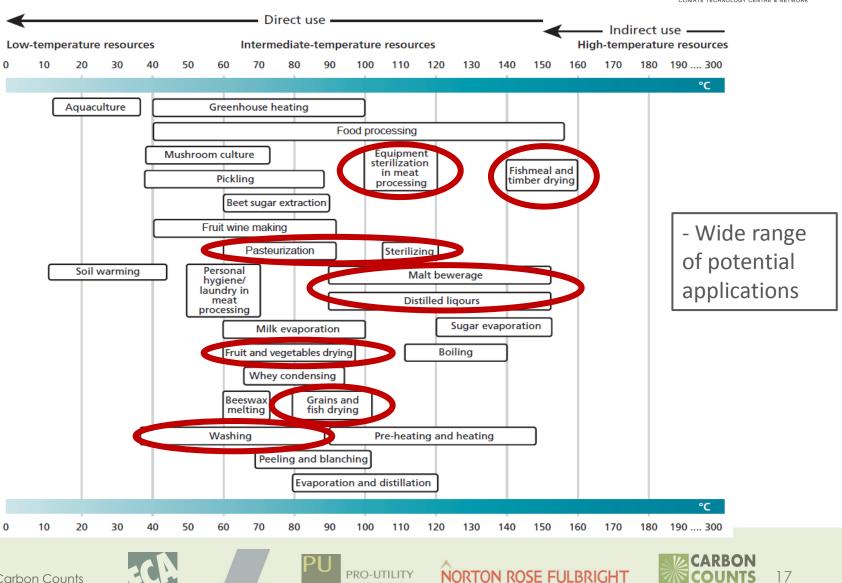
Geothermal power around the world



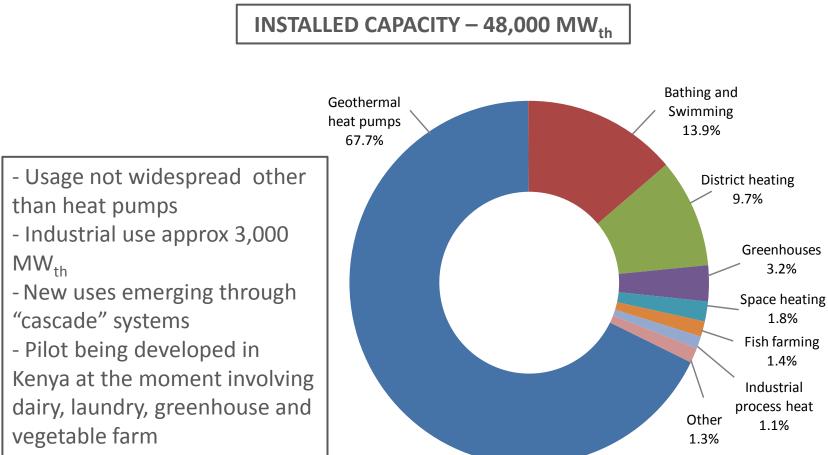
Geothermal power around the world INSTALLED CAPACITY - 12,500 MW Iceland Italy Turkey 667 MW 1,472 MW 397 MW 31.5 MW 84 MW China 33 MW USA **East Africa has** 3,387 MW Japan large potential 517 MW and rapidly Philippines Mexico 1,073 MW 2.040 MW growing Indonesia interest 1,344 MW Guatemala 57 MW Notable Papua NG **57 MW** El Salvador absence in 216 MW **South America** Nicaragua 160 MW New Zealand Costa Rica Kenya Australia 208 MW 7.3 MW 592 MW 1,210 MW 1.1 MW CARBON NORTON ROSE FULBRIGHT PRO-UTILITY 14 COUNTS © 2016, Carbon Counts


15

Geothermal power over time (MW)

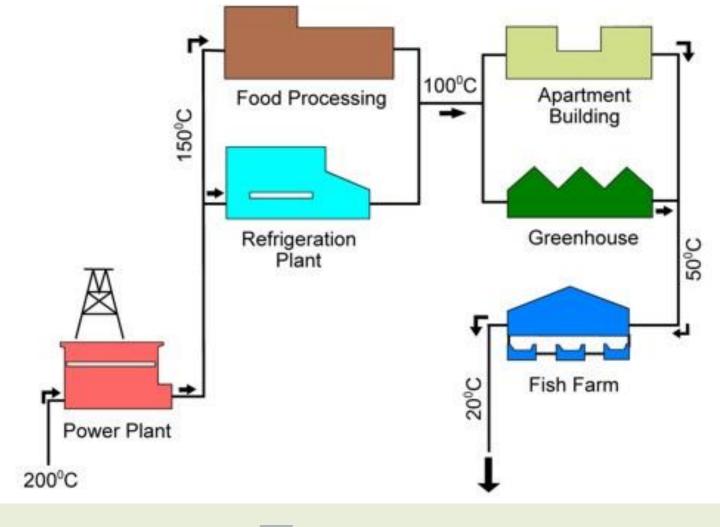


Geothermal power over time (MW)



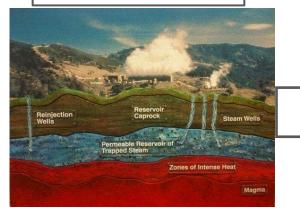
Direct uses of geothermal heat

Global direct use



Cascade geothermal system

PRO-UTILITY



Geothermal resource development

1. STEAMFIELD

1. Preliminary survey Reconnaissance etc.

2. Exploration Surface studies; geophysics/geochemistry

3. Test drilling Full or slim holes

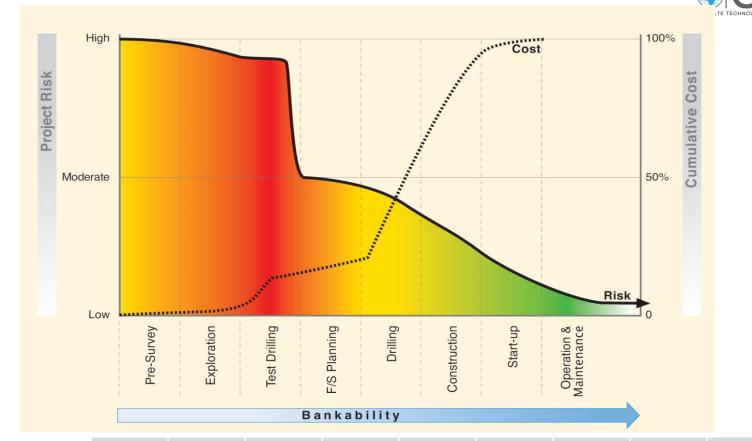
- 4. Review & Planning Permits, access rights, EIA
- 5. Field development

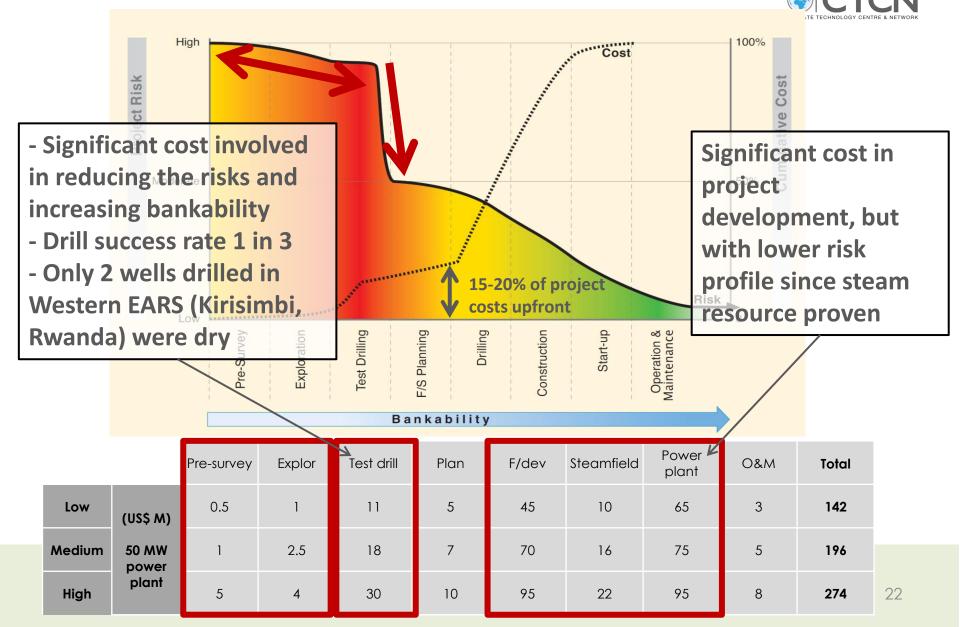
2. POWER PLANT

- 1. EPC contracts etc
- 2. Steam gathering system
- 3. Plant siting and construction
- 4. Cooling and water management

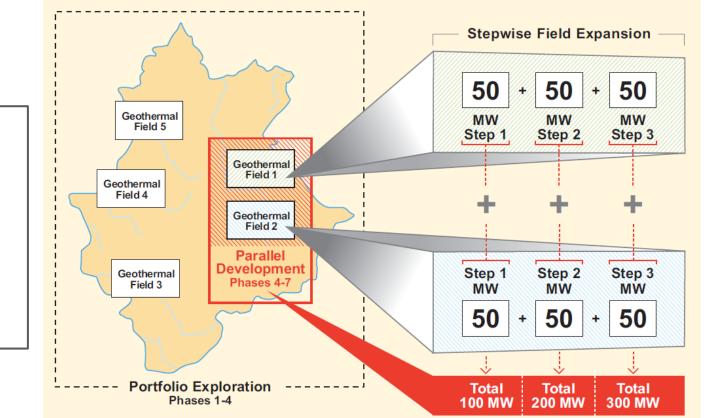
3. POWER EVAC.

- 1. Off-taker agreements (PPA)
- 2. Grid connection




Geothermal development risks & cost

		Pre-survey	Explor	Test drill	Plan	F/dev	Steamfield	Power plant	O&M	Total	
Low	(US\$ M)	0.5	1	11	5	45	10	65	3	142	
Medium	50 MW power	1	2.5	18	7	70	16	75	5	196	
High	plant	5	4	30	10	95	22	95	8	274	


21

Geothermal development risks & cost

Geothermal field development

INCREMENTAL STEP-OUT DEVELOPMENT

-Necessary for a range of reasons

- Resource uncertainty
- Investment risk etc.
- Most sites grow over time

© 2016, Carbon Counts

NORTON ROSE FULBRIGHT

Cost of geothermal power

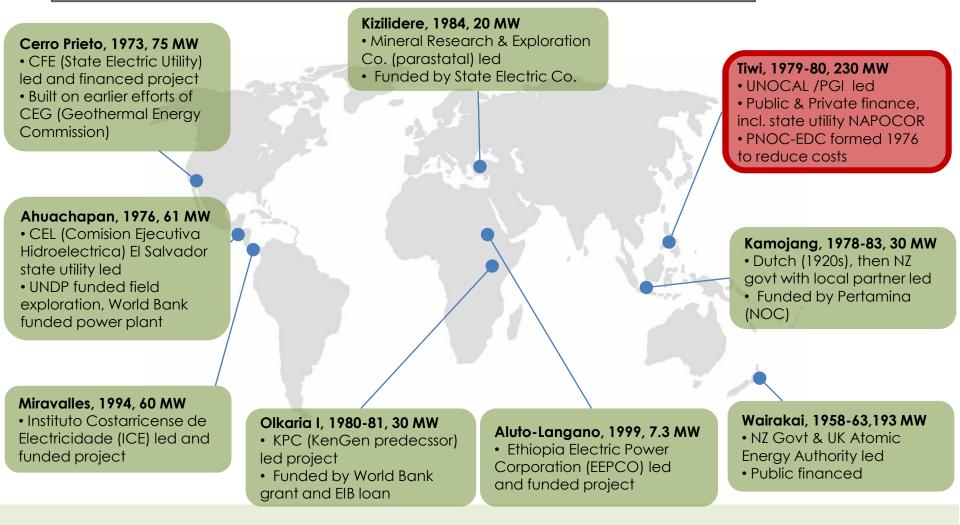
Plant type	Plant type Capital costs (US\$ m/MW)		Levelised cost of electricity (LCOE; US\$/kWh)	Notes	
			0.04 - 0.08	Gehringer and Loksha, 2012	
			0.04 - 0.05	(Costa Rica)	
		0.009 - 0.027	0.04 – 0.055	(Philippines)	
All	2.8 – 5.5		0.045 – 0.07	(Indonesia)	
			0.05 – 0.08	(Ethiopia)	
			0.043 - 0.08	(Kenya)	
			0.08	(Mexico)	
Flash	1.0 - 2.0	-	0.06 - 0.09	Augustine et. al, 2012	
Binary	2.0 - 6.5	0.022	0.04 – 0.15	For US sites (2008 prices).	
Greenfield binary			0.049 - 0.072	Goldstein et. al, 2011	
Typical flash	-	-	0.031 – 0.13	(2005 prices)	
Typical binary			0.033 – 0.17		
Dual flash	6.24	132 ª		US Energy Information	
Binary	4.36	100 a	-	Administration	
Flash	2.0 - 4.5		0.05 – 0.12	IEA, 2010	
Binary	2.4 – 5.9	-	0.07 – 0.20	(2008 prices)	
All	4.0 - 5.0		0.072 - 0.089	ESMAP, 2012	
	2.5	-	0.05 – 0.06	LJIVIAI, ZUTZ	
Average	3.0 – 5.0		0.05 – 0.15		
© 2016, Carbon Counts	ECA	PRO-UTILITY Promoting Utility Excellence		COUNTS 24	

Cost of geothermal power

	Plant type Capital costs (US\$ m/MW)		Operation o Maintenan costs (US\$/k	ce	Levelised cost of electricity (LCOE; US\$/kWh)		Notes		
					0.04 - 0.08 0.04 - 0.05		Gehringer and Loksha, 2012		
		2.8 – 5.5					(Costa Rica)		
					0.04 - 0.055		(Philippines)		
	All		0.009 - 0.02	27 0.045 – 0.07		(Indonesia)			
				0.05 - 0.08			(Ethiopia)		
				Geothermal REFiT US¢7.7/kWh					
	Flash	1.0 – 2.0	- [Duin	0.06 - 0.09				
	Binary	2.0 - 6.5	0.022	Z 0.04 – 0.15			10.2-12.9/kWh 8.5-11.7/kWh		
30	OMW power		Eskor	JS¢					
th	e range US\$		Hydro	omax l	JS¢1	13.5/kWht. al, 2011			
m	illion illion			Electromaxx US¢14.7-					
	Dual flash 6.24		132 a	Jacobsen USC		JS¢1	4-26/kWhrmation		
	Binary	4.36	100 a	Data from	I ERA		Administration		
	Flash	2.0 – 4.5	_		0.05 - 0.12	/	IEA, 2010		
	Binary	2.4 – 5.9	-		0.07 – 0.20		(2008 prices)		
	All	4.0 – 5.0 2.5	-	-	0.072 - 0.089		ESMAP, 2012		
	Average	3.0 - 5.0			0.05 – 0.15				
	© 2016, Carbon Counts	Stor Stor	ubi Make x c.	CO-UTILITY	NORTON ROSE FU	JLBRI	CHT COUNTS 25		

Project structuring

Year	Phase	Activity			Lead	d entity	CLIMATE TECH	NOLOGY CENTRE & NETWORK
1-2	1	Preliminary survey						
2-3	2	Exploration						
3-5	3	Test drilling						
5	4	Review/ planning		11C				
6-8	5	Field (steamfield) development	PV	Q^{u}				
8-10	6	Power plant construction	Ń				× Pi	
10	7	Start-up and Commissioning				Virg		
10+	8	Operation & Maintenance				bui		
		-Power plant						
		-Steamfield						
Exam	ple co	untries	C. Rica	Kenya	Kenya (alt)	Indonesia	USA	Chile, Italy
				El Salvador	Philippines	Turkey		Nicaragua
				Mexico		N. Zealand		Philippines
© 20)16, Carbon	Counts	Shanubi Maalee a ca	PRO-UTILITY Promating Utility Excellence		SE FULBRIGHT	CAR	BON INTS 26


First of a kind geothermal projects

PUBLIC SECTOR & DONORS KEY TO FOAK GREENFIELD DEPLOYMENT

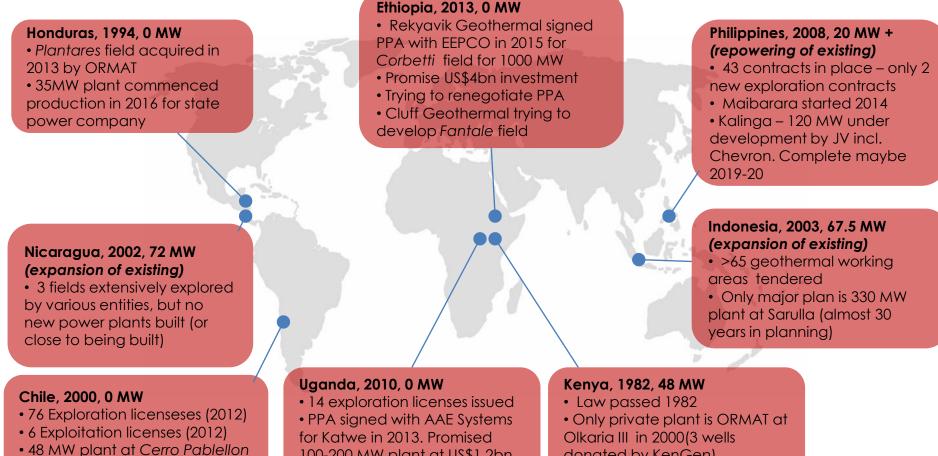
CARBON

27

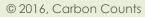
PRO-UTILITY Promoting Utility Excellence

Issues for private sector development

- Resource risk is major impediment
 - Commercial debt challenging to raise (5-10% cost of capital)
 - Equity investments expensive (>25% WACC)
- Development phase and payback period long and tied to electricity tariff, often regulated
 - Could take 20 years to break even
 - Does not make for an attractive investment for private equity
- Policies and measures can be used to stimulate market for private investment
 - Soft loans; tax allowances; risk insurance; REFiT
- Usually still requires "copper bottom" guarantee from Government
- GDC (Kenya) estimates following LCOEs:
 - Fully private (at 25% WACC) = US¢14-17/kWh
 - Public (steam) and private (power) = US¢6.5-10.5/kWh



Examples of private sector activity


RECORD OF PRIVATE DEVELOPMENT OF GREENFIELD PROJECTS IS POOR

- announced in 2015 by LaGeo
- 100-200 MW plant at US\$1.2bn
- Limited activity since

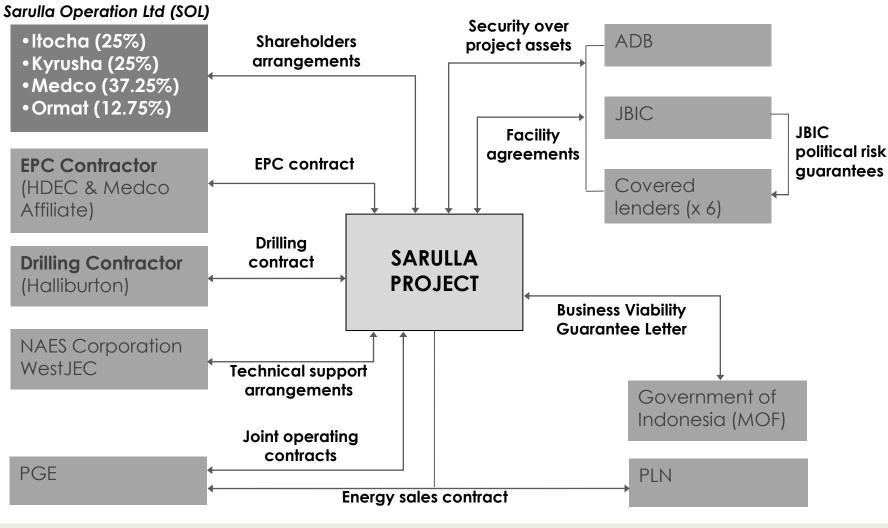
- donated by KenGen)
- Various under development

Menengai steamfield finance

Lender / Investor	Amount			
African Development Bank	US\$120 M (loan)			
World Bank Scale-up Renewable Energy Program (SREP)	US\$ 40 M (Ioan & grant)			
World Bank	US\$100 M (loan)			
Agence Francaise du Developpment (AFD)	US\$166 M (loan)			
European Investment Bank	US\$ 36 M (loan)			
GDC/GOK	US\$284 M (equity)			
Total	US\$746 million			

- Menengai steamfield estimated 1600 MW potential
- Phase I (above) is for 400 MW of steam development
 - Power plant could cost further US\$600 million (overnight cost of US\$1.4 bn total = US\$3.5m/MW installed)
 - 3 IPPs selected. Each constructing 35 MW at US\$120 million (initial overnight cost of US\$8.25m/MW installed)

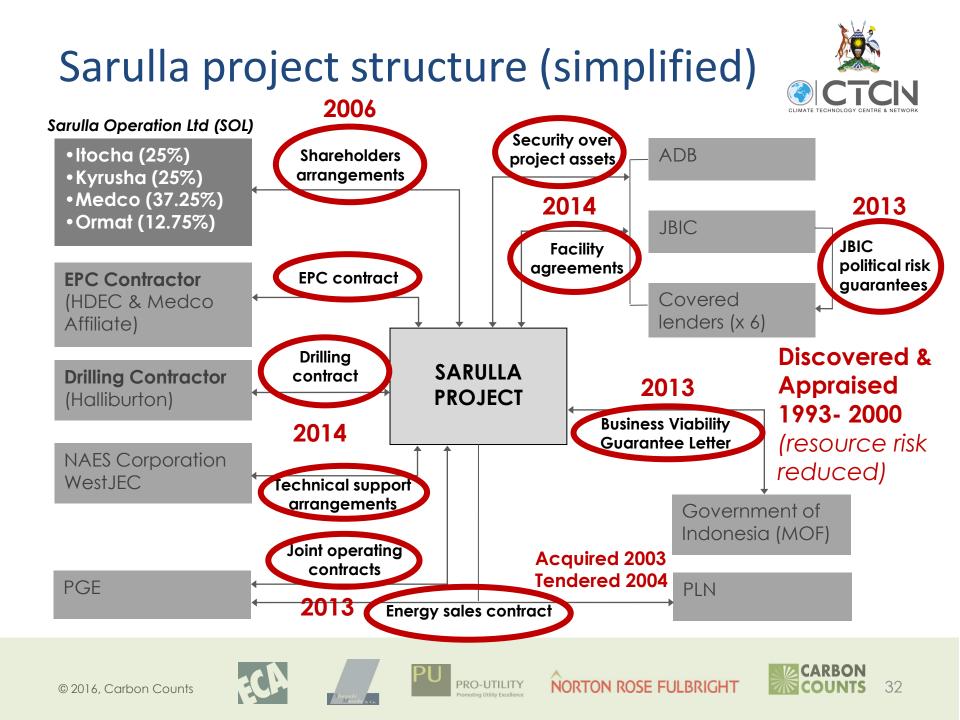
Sarulla project structure (simplified)

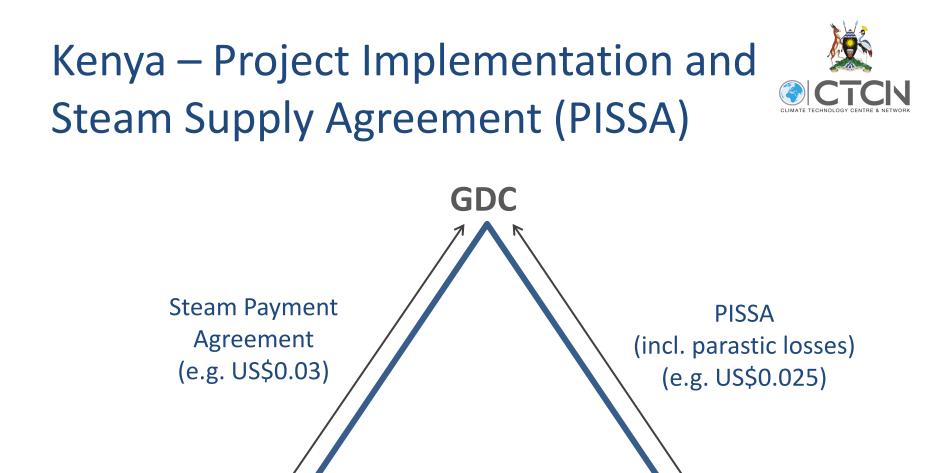


CARBON

οιιντς

31


NORTON ROSE FULBRIGHT



PRO-UTILITY

© 2016, Carbon Counts

PPA (e.g. US\$0.055)

PRO-UTILITY

KPLC

IPP

NORTON ROSE FULBRIGHT

Local community aspects

- Geothermal smaller footprint than other energy technologies
 - Approx. 1200-1500 m²/MW installed
 - -30 MW_e plant need 4-6 hectares
 - Exploration area much larger (10,000+ ha.)
- Geothermal laws can grant rights to explore and exploit geothermal resources
- But not title rights giving unfettered access to land

NORTON ROSE FUIL BRIGHT

Must be negotiated with Land Owner

Local community aspects (2)

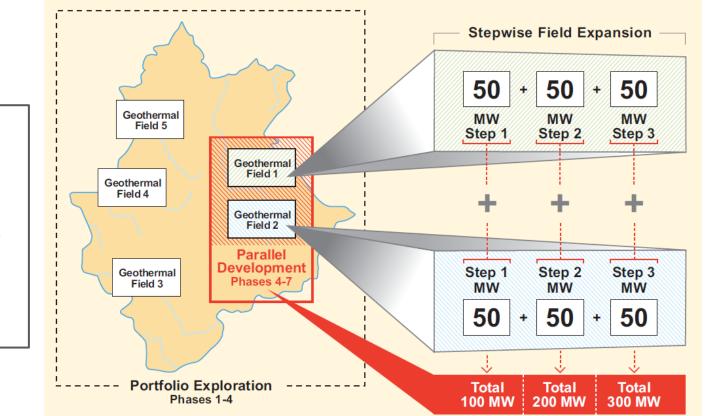
35

- Land access can present challenge
 - Title holder not always obvious or locally present (e.g. for customary tenure/tribal lands)
 - May not necessarily act in interest of locals
- Issues have arisen in Kenya (Olkaria IV) where communities resettled:
 - Resettlement Action Plan intended to give livelihood restoration commensurate with levels prior to move
 - Some issues arose regarding being moved close to other drill sites, uncompensated loss of earnings etc.

ON ROSE FUI BRI

Local community aspects (3)

- Environmental and Social Impact Assessment will likely be required for geothermal development:
 - Under NEA, EIA Regulations No. 13 of 1998; and
 - Where international funding provided (e.g. World Bank)
- Opportunity to discuss issues and air grievances with developers



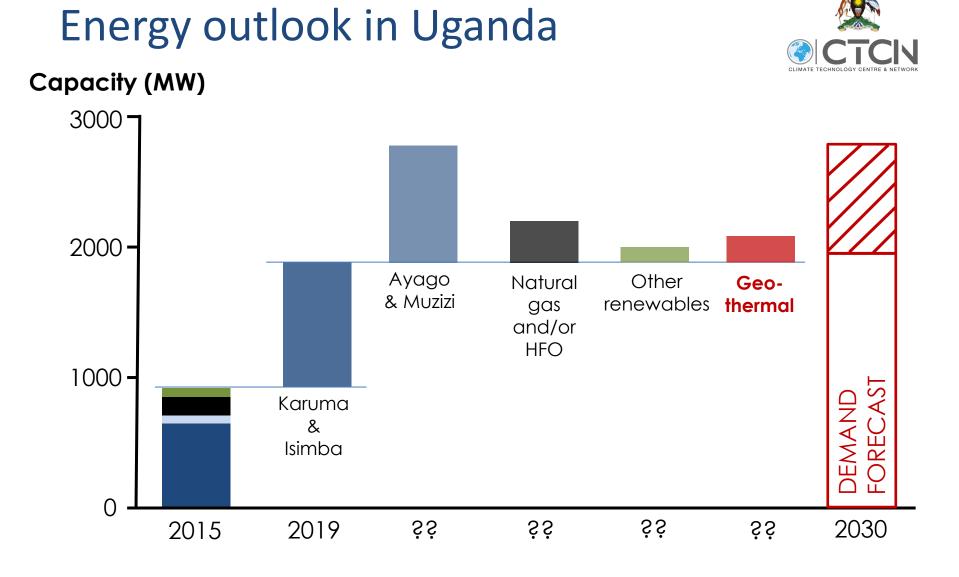
Geothermal field development

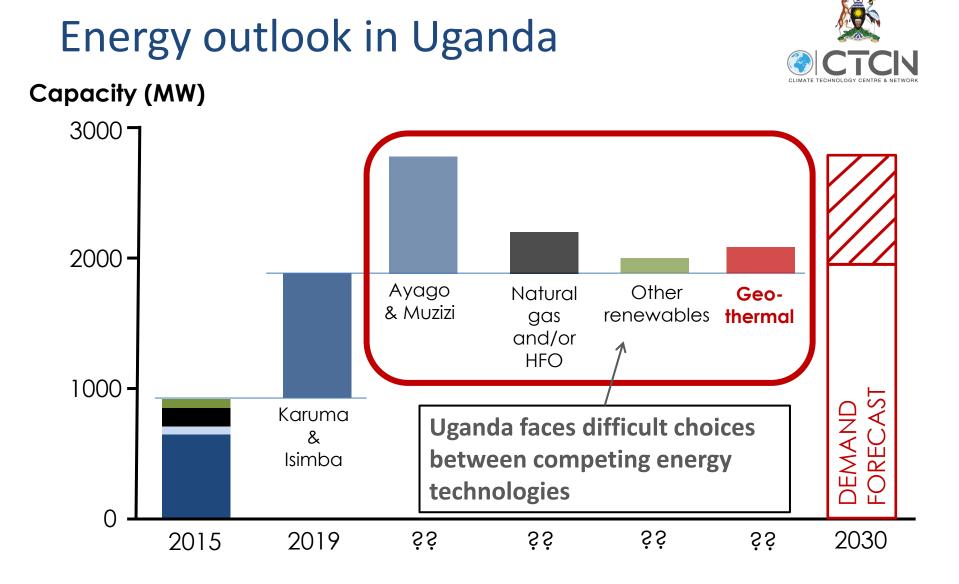
INCREMENTAL STEP-OUT DEVELOPMENT

-Necessary for a range of reasons

- Resource uncertainty
- Investment risk etc.
- Most sites grow over time

© 2016, Carbon Counts





NORTON ROSE FULBRIGHT

PRO-UTILITY

NORTON ROSE FULBRIGHT

Financing energy in Uganda

Energy type	GOU			Development Partners		CLIMATE TECHNOLOGY CENTRE
	UGX (bn)	US\$ (m)	UGX (bn)	US\$ (m)		
Large hydro	92.5	27	1386.25	410	\$	
Thermal (fossil)*	72.3*	21*	n,	/a		
Other renewables	2.2	0.66	8.8	2.6	GET FIT	THE WORLD BANK
Nuclear (uranium expl.)	14.1	4.2	n,	/a	UGANDA	
Geothermal	5.1	1.5	2.3	0.7		THE WORLD BANK

*capacity payments

Wide range of development partner funding opportunities available for geothermal energy in Uganda

Development partner opportunities

41

COUNTS

	AIM	HOST	AMOUNT	ACTIVITIES SUPPORTED
C Conservation	Fund geothermal energy in EARS	AUC, Addis Ababa	~ US\$75 million (including country contributions)	 (1) Infrastructure grants: 20%; (2) Surface studies grants: 80%; (3) Drilling grants: 40%; (4) Continuation Premium: up to 30%
ARCEO	Support geothermal energy in EARS	UNEP, Nairobi	~ US\$110 million (excluding co- finance)	(1) Regional Networking, Information Systems, Capacity Building, Policy Advice and awareness creation; (2) Technical Assistance for Surface Exploration Studies.
DFID Department for International Development	EAGER - catalyse private and public investment in geothermal	Adam Smith Intl, Nairobi	~US\$8 million	Advice to Governments on strategy, policy and regulation to attract investment in and overcome barriers to geothermal power
Scaling Up Renewable Energy Program (SREP)	Assist in achieving SE4All and Vision 2040	MEMD, Uganda	~ US\$100 million (geothermal, excl. co-finance)	Use of GOU and donor grants/concessional loans to leverage private sector investment into renewable energy
🝀 iceida	Assist EARS countries with geothermal exploration	ICEIDA	~US\$13 million	 (1) Reconnaissance, exploration up to drilling; (2) Technical assistance and capacity building including: training, institutional support; policy and legal framework
Others include:	WORLD BANK	An and a second	jica	European Investment Bank
		P		CARBON

PRO-UTILITY

© 2016, Carbon Counts

NORTON ROSE FULBRIGHT

Development partner opportunities

	AIM		HOST	AMOUNT	ACTIVITIES SUPPORTED	CLIMATE TECHNOLOGY CENTRE & NETWORK
CRAT	Fund geothe energy in EA		AUC, Addis Ababa	~US\$75 million (including country	(1) Infrastructure grants: 20studies grants: 80%; (3) Dri	
ARCEAD AT LOCAL		Shou of the	e techni	cal and fina	to take advanta ancial support ment partners?	BBC Systems, vice and awareness tance for Surface
DEFID Department for International Development	EAGER - cata private and investment geothermal	alyse public		~US\$8 million	Advice to Governments on s regulation to attract investm	
Scaling Up Renewable Energy Program (SREP)	Assist in ach SE4All and V	ic ving		riority tech	nology and donor gran loans to leverage private see renewable energy	
🝀 iceida	Assist EARS with geothe exploration		ICEIDA	~US\$13 million	 (1) Reconnaissance, explora (2) Technical assistance and including: training, institution and legal framework 	capacity building
Others include:	(##) W	HE Vorld Ank	The Constant OF De Lower	jica	AGENCE FRANÇAISE E DEVELOPPEMENT	European Investment Bank
© 2016, Carbon	Counts	ic A	Shonulii Maadaf x Co	PRO-UTILITY Promoting Utility Excellence	ORTON ROSE FULBRIGHT	CARBON COUNTS 42

What next for geothermal in Uganda?

- 1. What is the *urgency* to deploy geothermal energy?
 - Should the approach be *opportunistic* (passive) or *necessity* (focussed active support) oriented?
- 2. What are the *policy needs* for geothermal energy?
 - What instruments and measures can be used to promote geothermal?
- 3. How should geothermal projects be *structured* between *public* and *private* entities?
 - This will be key to understanding the type and level of financing that will be needed
- 4. How can opportunities for *funding* geothermal exploration and project development, in particular from donors, be accessed?
 - What challenges will be faced in accessing these funds?
- 5. What are the *legal and regulatory* needs for geothermal energy?
 - For government, donors, developers and local communities.

RTON ROSE FUI BRIGHT

Issues and options for geothermal energy policy

Formation of Geothermal Energy Policy and Laws in Uganda: Stakeholder Engagement Programme

Dr. Paul Zakkour

Project Manager, Carbon Counts

4th – 8th July 2016, Kabira Country Club, Kampala

- 1. What is the purpose of geothermal policy?
- 2. What is the purpose in Uganda?
- 3. What are experiences around the world?
- 4. What are the choices and options for Uganda in designing such a policy?

Purpose of a geothermal policy

- To define the objectives and ambitions of government in pursuing the technology
- To guide the structure, approaches, legal, regulatory, institutional arrangements and financing and incentives options it wishes to adopt in achieving the objectives in its territory
- Often encompassed into broader energy and/or renewable energy policies

What is the purpose in Uganda?

- A new, dedicated, geothermal policy will help to give clearer direction as to:
 - how geothermal energy projects should be developed
 - by whom
 - over what time frame
 - using which sources of finance and support mechanisms
- It may also outline a vision to guide development
 - A outline roadmap or
 - Geothermal Energy Master plan

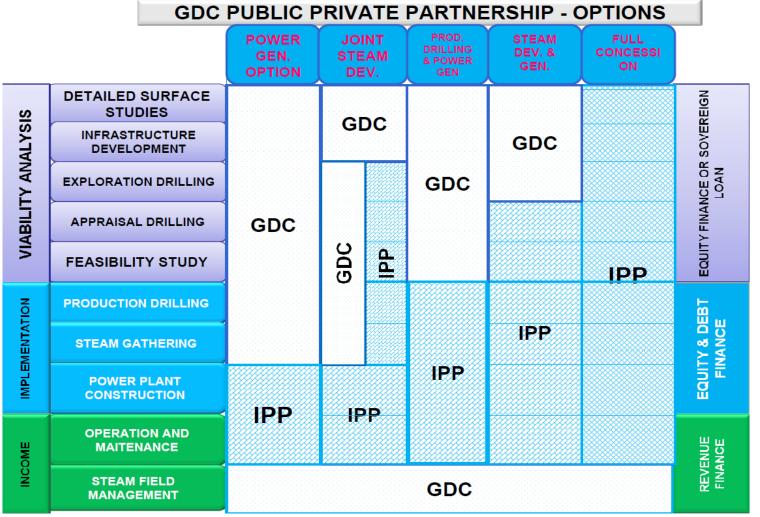
Experiences around the world

- Two main drivers apparent for geothermal globally:
 - Necessity. lack of other obvious sources of energy, and an over-reliance on variable hydro-power, have given rise to the importance of geothermal energy for baseload generation (e.g. in NZ, Kenya, C. America) →
 - **significant government efforts** to get the industry off-the-ground;
 - 2. Opportunity. the quality of the resource has tended to be manifest using information acquired as from other activities e.g exploration (such as in Philippines and Indonesia, where NOCs and IOCs have led).
 - Interest emerged in response to the **clear opportunity** presented.
- In reality, often a mixture of the two, but useful to note

RTON ROSE FUIL BRIGHT

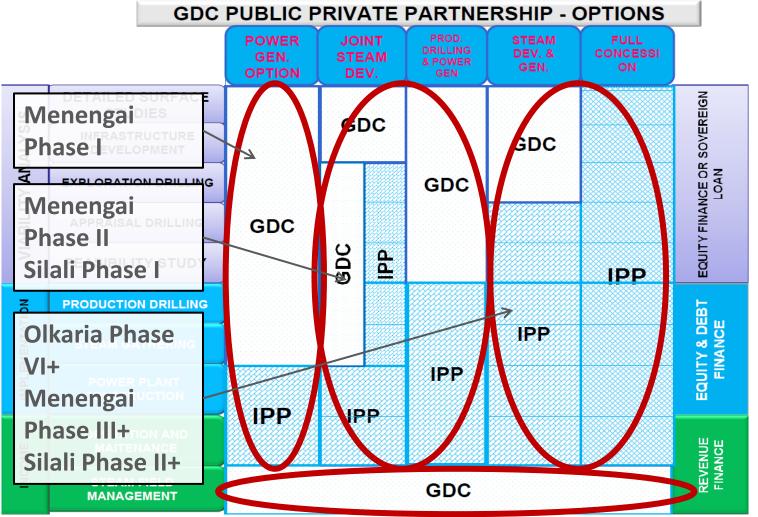
Experiences around the world (2)

- Nearly every FOAK geothermal project around the world has been publically-led and funded
- Risks too high for private financing
- But, policies tend to be *evolutionary*:
 - 1. Public-sector (and donor) leads efforts for FOAK
 - 2. Move towards PPP models for other *greenfield* development
 - 3. Opening up *brownfield*, *step-out*, production opportunities to 100% private sector led development



N ROSE ELLI BR

Kenya GDC vision



Kenya GDC vision

A word of caution

"There is little appetite from the private sector to fund projects where the nature and extent of the resource are unknown. The private sector only financed all stages of the project in 7.5% of the utility-scale projects in our database. 58.5% of projects had the costs entirely borne by the public sector, while 34% projects had the private sector bear costs at later stages in the development chain once the resource had been proved."

and that:

"private financiers are not willing to provide financing until all or at least 70% of the MW capacity has been drilled"

Source: Micale et. al. (2014). Report for Climate Investment Funds (CIF)

RTON ROSE FUI BRIGHT

Situation in Uganda today

- No policy supporting geothermal energy development
- GOU is *passive*, relying on the organic evolution of the industry based on 100% *private sector* led investment, incentivised by geothermal REFiT
- Concessions are held by *passive speculators*
 - poorly capitalised
 - Lacking technical competencies needed to develop such complex and long-term projects
- GRD mandate is unclear:
 - Research and data management unit?
 - Centralised point of contact for coordination of private sector-led development? or
 - Empowered to take projects forward itself?

Choices for Uganda today

54

- 1. The *opportunistic* approach. Carrying on with the current strategy of *private sector led* development. Possible enhance the enabling environment for *private sector led* development:
 - A revised Concession allocation process, greater role of government in compiling resource information, better safeguards against passive speculation etc;
 - Clearer rights over tenure and land access, perhaps with government guarantees over supporting permits;
 - A new set of enhanced incentives for geothermal energy (e.g. enhanced tax breaks etc.).
- 2. The *necessity* approach. Creating enhanced *public sector led* arrangements, e.g., through GRD or a parastatal company approach similar to Kenya or Tanzania. Take either fully-public or PPP approach to development of steamfield and power plants

RTON ROSE FUI BRIGHT

Summary of options

	Description	Pro's	Con's
A	Carry on with business as usual, relying on the private sector to develop the resource	Limited exposure of GOU to full project costs and risks.	Experiences to date in Uganda, as well as examples of successful deployment around the world, suggest low chance of projects being built. High LCOE.
В	As Option A, but increase GOU-led resource exploration with a view to bringing in private sector to develop when more resource certainty is achieved	Could accelerate deployment compared to Option A Exposure of GOU to full project costs is still limited.	Higher cost than Option A. Limited control over rate and scale of development – uncertain if private sector will respond effectively to the incentive provided Potentially high LCOE.
С	As Option B, but also provide new set of enhanced incentives for private sector to develop geothermal energy	Could accelerate deployment compared to Options A and B Lower LCOEs than Option A or B Exposure of GOU to full project costs is still limited	Potentially high cost to GOU Limited control over rate and scale of development – uncertain if private sector will respond effectively to the incentive provided
D	GOU leads on project development, through either: - GRD - New parastatal agency ("UGDC") - An existing parastatal agency (e.g. UEGCL; NOC) Include PPP approaches.	Greater control over rate and scale of development. Able to access to donor grants and concessional loans. Lower LCOEs than Option A, B or C (assuming concessional finance) Private sector could lead on power plant development as PPP approach.	GOU takes on significant debt. GOU needs to provide core funding to responsible agency Full exposure to project costs and risks.

Legal and regulatory choices for geothermal energy

Formation of Geothermal Energy Policy and Laws in Uganda: Stakeholder Engagement Programme

Dr. Paul Zakkour

Project Manager, Carbon Counts

4th – 8th July 2016, Kabira Country Club, Kampala

- 1. What is the purpose of geothermal energy law and regulations?
- 2. What are the main elements of geothermal energy laws?
- 3. What are experiences around the world?
- 4. What are the norms, standards and issues that have arisen in different jurisdictions?
- 5. What are the key questions for Uganda to consider in designing such laws and regulations?

Purpose of geothermal law/regulations

- Vest tenure rights into private-sector (or parastatal agencies) to explore for and exploit geothermal resources
- Various elements typically included:
 - Government power to declare geothermal resource areas
 - Methods for allocating concessions
 - Permitting regime:
 - Exploration terms **C** Any financial requirements (e.g.

 - Conversion of exploration to exploitation permits
 - Regulatory regime:
 - Permitting authority
 - Regulatory authority
 - Interaction with other laws (water, wildlife, environment etc)

Concession allocation

• Direct request

 Developers make unsolicited applications to Government for the rights (i.e. a permit or license) to explore for geothermal resources within an area defined by the applicant, in either *declared geothermal resource areas* or outside.

Public tender

 Government solicits tenders from developers for the right to explore and develop geothermal resources for *declared geothermal resource areas* on a competitive basis (e.g. as in Chile and Indonesia). The release of areas for concessions may be dictated by a geothermal resources master plan;

Dual system

 Involving public tendering for *defined geothermal resource* areas, and also non-competitive approaches for undefined areas, allocated on a first-come-first-served basis.

Permit applications

1. Legal status of the applicant

 Many geothermal laws restrict applications from foreign enterprises and nationals, usually requiring the applicant to be registered in the country.

2. Technical capability of the applicant

 Based on track record of previous geothermal project development or similar undertakings.

3. Financial capability of the applicant

 Details on the financial status of the company and its directors. In some cases geothermal laws specify requirements for financial guarantees.

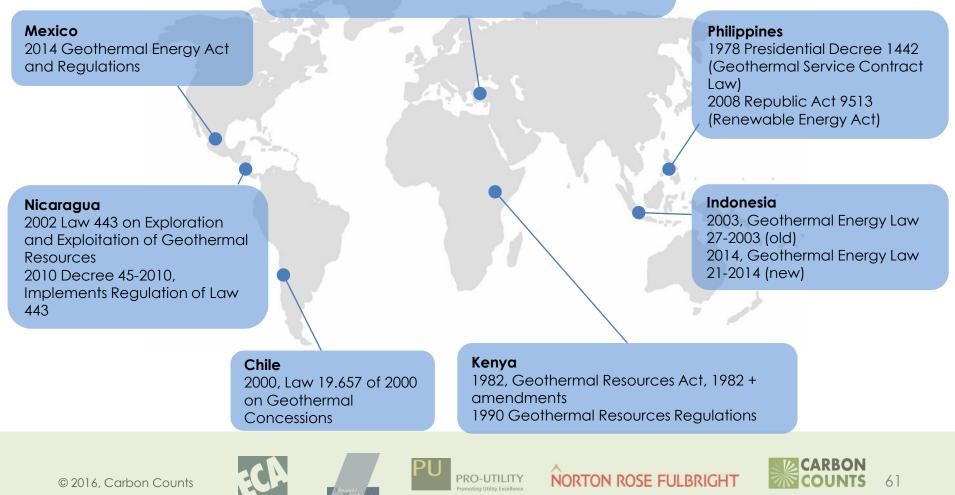
4. Delineation of the area to be explored

5. Detailed technical work programme including:

- methods to be employed
- any potential adverse effects of activities
- estimated expenditures for work to be carried out (by phase/period/quarter)

6. Other environmental permits needed for activities

 Environmental permits and terms of reference for an EIA study can also accompany applications, where needed (e.g. in national parks)



Example dedicated geothermal laws

Turkey

2007 Law No. 5686 of 2007 on Geothermal Resources and Mineral Waters 2007 Regulation No. 26727 of 2007 on Geothermal Resources and Mineral Water Law Implementation

Approaches around the world

	Allocation of	Concession periods				
Country			ploration	Exploitation		Notes
		Initial	Renew/Extend	Initial	Renew/Extend	
	Dual system. Public tender may also be	2 years 2 years (with >25% progress)		Indefinite duration		Streamlined through various Decrees (32- 2004; 14-2013). Convert to Exploitation permit within 2 years
Chile	launched in cases of overlaps. Last tender in 2010	Max. 100,000 ha.		Max. 20,000 ha		
	Geothermal Working Areas defined by	3 years (+2 yr feas. study)	1 year (twice)	30 years	Indefinite extension	Enabled municipalities to lead exploration. Revoked by new law
Indonesia	Indonesia Government. Public tender for Working Areas. Award to bidder with lowest estimated cost per kWh _e	Max. 200,000 ha.		Max. 10,000 ha.		Enabled private participation in exploration
		5 years (max. incl feasibility study)	1 year (twice)	37 years	20 years	Removed geothermal from ambit of mining, thus allowing activity in forests/parks
	Direct request, FCFS basis. Geothermal	1 year	1 year	30 years	5 years	Convert to Exploitation permit within 12 months
Kenya	Resources Area may be defined by Minister.	5 years	No limit (as initial)	Indefin	ite duration.	Introduced detailed drilling codes & model license
	Direct request.	3 years	3 years	30 years	Indefinite extension	Allows private sector
Mexico Production (exploit.) Mexico permits only to exploration permit holder		Max. 150,000 ha.		No larger than exploration area		involvement. Production permits issued by National Water Commission

NORTON ROSE FULBRIGHT

Approaches around the world

Allocation of				sion periods		
Country	Concessions		loration	Expl	Notes	
		Initial	Renew/Extend	Initial	Renew/Extend	
Nicaragua	Dual system. Resource Areas released by	3 years	2 years (>2 wells must be drilled)	25 years	10 years	Convert to Exploitation permit
Nicalagua	declaration through Ministry of Energy & Mines.	Max. 10,000 ha. (declared areas) Max. 40,000 ha (undeclared areas)		Max. 2,000 ha.		within 9 months
	Geothermal Reservations set by Presidential Decree. GSC introduced	-	-	-	-	Basis for Dept of Energy to regulate activities and to contract out to the third (private) parties
Philippines	Public tender. GRESC covers both Exploration and Exploitation. Award through OCSP system ^a	2 years	1 year	25 years	25 years	New incentives (See Annex B) and contracts (GRESC)
	Direct request. Prospecting License	3 years	1 year	30 years	10 years	Issued by Local Administration.
Turkey	Prospecting License on FCFS basis. Turkey Where overlap occurs, fastest/highest gets award		5,000 ha.	As for Exp	loration area	Convert to Exploitation permit before end of term, and implemented within 2 years

Approaches around the world

	Allocation of Concessions					
Country		Exploration		Exploitation		Notes
		Initial	Renew/Extend	Initial	Renew/Extend	
Nicaragua	Dual system. Resource Areas released by	3 years	2 years (>2 wells must be drilled)	25 years	10 years	Convert to Exploitation permit
Not	declaration through Ministri of Energy & Going to	Max. 10,000 ha	. (declared areas) Value this	in deta	iii ^{o ha.} suffi	within 9 months Ceto Basis for Dopt of
say,	Geothermal the ti fram GSC introduced	nework	being c	Irafted v	will be <i>e</i>	connact out to mo
	Exploration and		-	-		third (private) parties New incentives (See
stan	Exploration and dards from systems	om ^{²ye} diff	ferent pa	arts of t	he ²⁵ world	Annex B) and contracts (GRESC)
Turkey	Direct request. Prospecting License on FCFS basis. Where overlap occurs,	3 years Max.	1 year 5,000 ha.	30 years As for Exp	10 years loration area	Issued by Local Administration. Convert to Exploitation permit before end of term,
	fastest/highest gets award					and implemented within 2 years

Permitting around the world

- Concession allocation
 - Range of systems used
 - Dual systems are fairly common
 - Various methods used to handle overlapping applications

• Exploration permits

- Typically permits granted for 2-3 years. Usually areal limits apply
- Renewal usually for 1-2 years
- In some cases renewal only allowed where demonstrable progress against workplan is shown
- Rules governing conversion to Exploitation Permit highly variable – range from before permit expiry (Turkey) to within 2 years of expiry (Chile)

• Exploitation permits

- Typically permits granted for 25-37 years
- Renewal usually indefinite

• Fees

- Turkey: US\$350 Exploration; up to 4x this amount for Exploitation
- Nicaragua: US\$25/km² rising to US\$50/km² after yr 2
- Kenya: US\$500 for Exploration; US\$1200 Exploitation

• Royalties

- Chile: US\$8.50/yr/km²
- Kenya: none applied although law allows for it

Guarantees and bonds

- Mexico: Performance Bond of 1% and a Guarantee of 0.5% of the proposed cost of the work to be carried out
- Nicaragua: security in favour of the Ministry for US\$50,000
- Turkey: 1% of the licensing fees per hectare, with the discretion to increase this by as much as 50%.

Tying-up of concessions with operators that do not necessarily posses the interest, technical competence or financial capabilities to explore and exploit the resource, e.g. passive speculators - Widespread.

- Geothermal development in Chile has long been constrained by this problem, alongside other factors
- In Indonesia, concessions are awarded to the bidder offering the lowest power price, despite the bidder having very limited capacity to calculate this amount due to uncertainties about the resource i.e. due to the lack of public data access ahead of bidding. This has encouraged speculators
- Common problem in East Africa

TON ROSE FUILBRIGHT

Common issues (2)

Disputes over land access, and the multiple and often complex frameworks through which developers need to operate

- In many cases, in addition to executing a PPA, government guarantees are often needed to support the creditworthiness of the offtaker and to facilitate additional permitting requirements, typically enacted through an *Implementation Agreement*.
- Kenya (Olkaria III), Chile, and Ethiopia (Corbetti geothermal field) all experiencing this problem
- Indonesia, New Geothermal Law (2014) allows geothermal developments in conservation forests and national parks

Environmental and social impact assessment requirements

RTON ROSE FUL BRIGHT

• Noted to be a challenge in Chile and Kenya (e.g. obtaining permits from the Kenya Forestry Service).

Issues to consider in Uganda

Concessions allocation

- how concessions should be defined and allocated?
- Through government led tender/auction or bidding, or through a more *ad hoc* direct request process?
- In part, this will be determined by the policy choice as to how government wishes to structure investments in the sector

Institutional arrangements

 Which authority will be responsible for running any bidding rounds, issuing and renewing permits etc?

Regulatory arrangements

- License application requirements and processing
- The terms for concessions with respect to their time limit and renewals
- The maximum area to which permits should apply
- Technical and financial standards to be incorporated in the licenses

Issues to consider in Uganda

• Financial arrangements


- Charges for licenses what level? To which department?
- Royalties (on steam production) should they be charged, at what rate, who does the money go to? What about local communities?
- Use of guarantees/performance bonds (as applied in e.g. Turkey, Mexico)?
- Interactions with other laws mining, petroleum, groundwater, surface water, health, safety and environment, wildlife, civil protection and national content etc.
 - Do any modifications need to be made which prevent geothermal exploration/exploitation taking place?
 - What norms and standards can be drawn from existing regulations – e.g. Petroleum Act?
 - What about land access and tenure rights?

More detailed information available in our reports: (Available from Geothermal Resources Department)

Climate Technology Centre and Network (CTCN)

Formulation of Geothermal Energy Policy, Legal and Regulatory Framework in Uganda

CTCN Request: 2015-022/UGA

STAKEHOLDER ENGAGEMENT PLAN

Carbon Counts Company (UK) Ltd

16 June 2016


Prepared by: Doreen Namyalo Kyazze, Winifred Nabakiibi (Pro-Utility Ltd), Paul Zakkour (Carbon Counts)

NORTON ROSE FULBRIGHT

NORTON ROSE FULBRIGHT

/ CARBON

COUNTS

PRO-UTILITY

Thank you

Paul Zakkour

Carbon Counts

paul.zakkour@carbon-counts.com

www.carbon-counts.com

